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Egry József str., 18, 1111 Budapest, HUNGARY

email: peto@hvt.bme.hu, seller@hvt.bme.hu

Abstract: The detection performance of a passive radar systems is generally determined

by the received reference and surveillance signals purity. In recent times a number of

interference cancellation techniques have been researched to deal with the disturbances

on the surveillance channel. The variety of different methods operate in the space, time

and frequency domains with having different implementations. This paper aims to exam-

ine and compare the performances of the fundamental temporal filtering methods in real

environment using field measurement data.

1. Introduction

A very significant limitation factor of the proper operation of passive radars is the so-called

masking effect [1]. This undesired effect limits the detection capabilities when the surveillance

channel contains unwanted reference correlated signal components in addition to the useful tar-

get reflection. In recent times the Zero Doppler Interference Supression (ZDIS) is an actively

researched field of the passive radars [3], [5], [6], [7], [8], [9], [10], [11].

The suppression of the undesired interferences are often realized in the space domain via the

application of antenna systems and digital beamforming techniques. The operation and effec-

tiveness of fixed and adaptive beamformers are widely inspected in passive radar scenarios in

[7].

Beside the application of spatial filtering by means of digital beamforming the adaptive tem-

poral cancellation methods also have significant role in the ZDIS. These techniques in passive

radar scenario utilizes the available reference signal to cancel out the zero Doppler shifted and

delayed replicas of the transmitted illumination signal. These procedures are quite different

in implementation or the subspace selection but solve the Wiener filtering problem without

exception. The resulting FIR (Finite Impulse Response) filter produce the sum of the properly

weighted and delayed replicas of the reference signal, which is then subtracted from the surveil-

lance channel.

As these algorithms are trying to properly estimate the current impulse response of the envi-

ronment, stationarity is very important. Cardinali et al. compared the available iterative Wiener

filtering techniques in passive radar scenario such as the LMS (Least Mean Square), NLMS

(Normalized Least Mean Square), RLS (Recursive Least Mean Square) algorithms [10]. In

contrast to the iterative solutions, which adapt the weight coefficients sample by sample the
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ECA (Extensive Cancellation Algorithm) apply the SMI (Sample Matrix Inversion) method to

estimate the inverse of the temporal correlation matrix on the whole coherent signal processing

batch [11]. As the environment is often not stationary during the CPI (Coherent Processing In-

terval) the estimation of the filter coefficient can be more accurate using shorter batches. This

filter modification is investigated by F. Colone et al. in [3], [6]. Cardinali et al. compared the

LMS, NLMS, RLS and also the ECA algorithms in [10] by evaluating the clutter attenuation on

simulated scenarios.

The ultimate goal of this paper is to present a relevant and objective performance comparison of

the currently available interference cancellation techniques applied in passive radar systems. To

achieve this aim, field measurement result are evaluated using the so far researched algorithms.

To compare their performances a detected target is analyzed along its trajectory. The perfor-

mance metric used in this research is the achieved target Signal to Interference and Noise Ratio

(SINR).

2. Method of algorithm performance evaluation

The performance of the different filtering methods are compared using their achieved improve-

ment in the range-Doppler matrix. The demonstrator hardware used for this experiment is a quad

channel passive radar receiver. The detailed description of this hardware can be found in [4].

From among the four receiver channel one is used as the reference channel and the remaining

three channel are used as the surveillance channels. To investigate the performance of tempo-

ral filtering techniques only the first antenna channel is selected from the surveillance antenna

array. The relevant target SINR values are obtained from field measurement data using DVB-T

signal as the Illuminator of Opportunity (IoP) at f = 634MHz. The measurements were taken

near to Ferenc Liszt international airport at Budapest. In the test measurement several landing

airplanes have been recorded. The saved offline data is then processed with the different algo-

rithms. At the output of the processing the SINR of the captured airplane have been extracted

from the RD matrix. The CPI used for all the measurements described in this paper is 125ms.

The presented algorithm performance improvements are relative to the results obtained when

no filtering is applied. More details about the measurement scenario and the configuration can

also be found in [7].

3. Temporal filtering techniques

Time domain filtering techniques utilize the available reference channel xr[n], n = 0 . . .N − 1

to cancel out the time delayed and Doppler shifted replicas of the transmitted illuminator signal.

The number of samples in a CPI is denoted by N . This filtering concept assumes a linear channel

model, thus solves the Wiener filtering problem to obtain the filter coefficient for a trasversal

filter. The structure of the adaptive time domain filter is illustrated in figure 1.

The filtered output samples xf [n] are calculated by the subtracting the time delayed samples of
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Figure 1: Adaptive time domain filter structure

the reference signal xr[n− i], i = 0, 1 . . . from the surveillance signal samples xs[n].

xf [n] = xs[n]−w
H
tdxr[n], (1)

where the xr[n] vector denotes the last K samples of the reference channel and wtd is the filter

coefficient vector that is calculated adaptively from the input channels wtd ∈ CK×1.

xr[n] =
[

xr(n) xr(n− 1) . . . xr(n−K + 1)
]T

(2)

The adaptive coefficient control block estimates the surveillance channel parameters with a

linear model by minimizing the Mean Squared Error (MSE) at the output of the filter. In case of

passive radars, it is the filtered surveillance channel xf [n].

min
wtd

IE
{

|xf [n]|
2}

(3)

Solving 3 results in the well known Wiener-Hopf equation.

wtd = Rt

−1
rt, (4)

where Rt is the autocorrelation matrix of the reference signal and rt is the cross-correlation

vector of the time delayed replicas of the reference signal and surveillance signal.

Rt = IE
{

xr[n]xr[n]
H
}

(5a)

rt = IE {xs[n]
∗
xr[n]} (5b)

In real cases the Rt and rt are not known, thus we have to estimate them from the measured

data. The following presented algorithms are all differ in the estimation techniques. The Sample

Matrix Inversion (SMI) and the Extensive Cancellation Algorithm (ECA) use the whole CPI for

the estimation. In contrast the batches version of the ECA algorithm (ECA-B) use smaller frac-

tions of the CPI. While the iterative LMS, NLMS and RLS algorithms produce new estimation

for every new signal sample.
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Figure 2: SMI algorithm improvements with different filter dimensions

3.1. Sample matrix inversion

The most obvious filter coefficient calculation method is the SMI which use the sample average

to estimate the real values. The filter output using the SMI technique in matrix form can be

written as follows:

xf =
(

I −X
(

X
H
X

)

−1
X

H
)

xs, (6)

where xf ∈ CN×1 is the vector of the filtered output signal, xs ∈ CN×1 is the surveillance

signal vector, and X ∈ CN×K is the signal subspace matrix, which is composed of the time

delayed replicas of the reference signal vector xr ∈ CN×1 and I ∈ CN×N is an identity matrix.

X =
[

xr Dxr . . . D
K−1

xr

]

(7)

In 7 D is a permutation matrix, that applies time delay on the rerence signal vector by one

sample. The detailed formulalation can be found in [6].

In this calculation method the only configurable parameter is the depth of the filter K. Results

obtained with the SMI implementation of the time domain filter can be seen in figure 2. The

curves in the figure show the achieved improvements for increasing filter dimension. It can be

observed that as the target approaches to the radar the gain of the filtering decreases as the same

amount of cancelled clutter power does not grant the same target SINR improvements when

the SINRtarget is high enough. As expected the achieved improvement increases for higher K

values. However there is no reason to increase K after a certain value, as further improvements

are negligible. We must also note that the optimal value of K is environment specific. Range-

Doppler matrix calculated with the SMI coefficient calculation method for K = 128 can be

seen in figure 8a. A deep null can be clearly identified at the zero Doppler line from 0 to the

128th range cell.

3.2. ECA

The standard transversal filter structure can effectively remove the time delayed replicas of

the reference channel which are zero Doppler shifted. In case the environment is not static
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the clutter also has non zero Doppler shifted components from slowly moving ground objects

like trees or vegetation. In order to deal with these effects the ECA algorithm expands the signal

subspace X with the Doppler shifted versions of the reference signal and its time delay replicas.

The extended reference signal subspace matrix has the following form:

X
′ =

[

Λ−PX Λ−P+1X . . . Λ−1X X Λ1X . . . ΛP−1X ΛPX
]

, (8)

where Λi is a matrix which applies Doppler shift on the transformed vector with a frequency

equal with i Doppler bin. This method is first described by F. Colone and P. Lombardo in [11]

and currently exist a number of different modifications such as ECA-B, ECA-S, ECA-C and

ECA-CD [6], [3], [5], [8]. In its basic form it uses the whole CPI to calculate the corresponding

filter coefficient. The filtered output signal is calculated using 6 with the replacement of X by

X
′. Configuration of the filter is done with choosing the time domain depth K and Doppler

domain depth P parameters. It must be emphasized that care must be taken while specifying

the Doppler domain depth as unreasonably high values can result in cancelling the useful target

reflection also. Figure 8b shows the RD matrix obtained with the ECA filtering. Its filtering

performance is investigated along with the ECA-B algorithm in the following section.

3.3. ECA-B

The batches version of the ECA filter calculates the coefficient vector wtd and perform the

filtering on shorter batches than the CPI. With this modification the filter has greater resistance

against the non-stationer behaviour of the environment. Another great advantage is the reduced

computation cost relative to the standard ECA algorithm. The filtering technique is proposed by

F. Colone et al. in [6]. Let us partition the N samples of the CPI to T batches t = 0 . . . T − 1.

In this case one batch consist of N/T samples. Let us denote the signal samples of the tth batch

with x
(t)
s , x

(t)
f and x

t
r(t).

x
(t)
r =

[

xr(tN/T ) xr(tN/T + 1) . . . xr((t+ 1)N/T − 1)
]T

(9)

(10)

Figure 3: ECA-B algorithm improvements with different batch sizes
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Figure 4: LMS algorithm improvements with different step sizes µ

The same form holds for xt
s and x

t
f . Consequently the signal subspace spanned by the reference

signal and its time and Doppler shifted replicas in the tth batch is denoted by X
′(t). Having this

is mind we can calculate the filtered output signal using the following formula:

x
(t)
f =

(

I −X
′(t)

(

X
′(t)H

X
′(t)

)

−1

X
′(t)H

)

x
(t)
s w, (11)

where t = 0 . . . T − 1. By setting the batch size shorter, the filter have the opportunity to adapt

to the rapidly changing envrionment. A well known and studied disadvantage of this method

is that alias echoes appears in the RD matrix along the Doppler axis beside the usefull target

echo. This behaviour is investigated deeply in a theoretical way in [3]. Figure 8c illustrates the

range-Doppler matrix obtained with the ECA-B filter when the whole CPI is partitioned to 32

batches. A very pleasant effect of the processing is the widening of the filter noth in the Doppler

dimension. This can be clearly seen in figure 8c. The achieved improvements for different batch

sizes can be seen in figure 3 with K = 128.

3.4. Least Mean Square

The LMS algorithm is an iterative implementation of the Wiener filter, where the coefficients

are estimated for every new signal sample. This architecture results in a faster implementation

than the SMI, ECA or the ECA-B algorithm. The LMS algorithm output at the nth time instant

and the updated coefficient vector at the n+ 1th time instant are calculated as follows:

xf (n) = e(n) = xs(n)−w(n)Hxr(n) (12a)

wLMS(n + 1) = w(n) + µxr(n)e(n)
∗ (12b)

where e(n) is the instantaneous error and µ is the step size parameter which affects the con-

vergence rate of the filter. Step size µ must be chosen according to 13 to ensure stability and

convergence.

0 < µ <
2

∑K−1
k=0 IE

{

|xs(n− k)|2
} (13)
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[2], [10] Higher step size values offers faster reactions to the changes in the environment, how-

ever the filter will suffer from misadjustment and will not able to suppress the zero Doppler

interferences properly. At the same time choosing the step size too small results in sluggish fil-

ter response. In order to illustrate its effects on the filter clutter suppression performance figure

4 illustrates the achieved target SINR values for different step size parameters.

3.5. Normalized least mean square

The NLMS algorithm is the extension of the LMS method in a sense that the µ step size param-

eter is normalized with the instantaneous power of the reference signal vector. Thus the weight

coefficient of the NLMS algorithm is calculated with using the following formula:

wNLMS(n+ 1) = w(n) +
µn

a+ xr(n)Hxr(n)
xr(n)e(n)

∗, (14)

where a is a small number used to prevent instability and µn is the modified step size parameter.

In contrast to the LMS method, the step size parameter is no longer constant but it changes

with the power of the reference signal and its time delayed replicas xr(n − k), k = 0 . . .K −

1. This ensures a more stable operation and faster convergence [10]. The NLMS algorithm

improvements for a variety of µn values can be seen in figure 5.

3.6. Recursive Least Squares

The RLS algorithm use a different error function than the LMS or NLMS. This method takes

into consideration the earlier filter error values with reduced influence.

eRLS(n) =
n

∑

i=0

λn−i |e(i)|2 (15)

The λ parameter is often referred to as the forgetting factor, which is chosen in the range of

0 < λ ≤ 1. Higher λ values takes into account the earlier values with increased relevance. By

Figure 5: NLMS algorithm improvements with different step sizes (µn)
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defining the error function in the above form the filter update equations for the RLS method can

be written as follows:

k(n) =
λ−1

P (n− 1)xr(n)

1 + λ−1xr(n)HP (n− 1)xr(n)
(16)

α(n) = xs(n)−W
H(n− 1)xr(n) (17)

wRLS(n) = wRLS(n− 1) + k(n)αH(n) (18)

P (n) = λ−1
P (n− 1)− λ−1k(n)xr(n)

H
P (n− 1) (19)

[2], [10]. The result obtained with changing the λ parameter can be seen in 6.

Figure 6: RLS algorithm improvements with different forgetting factors (λ).

4. Final results and Conclusion

Figure 7: SINR improvements of the different time domain filtering algorithms

The final comparison of the inspected algorithms is obtained with setting the best parameters

for each of the methods. Figure 7 illustrates the achieves target SINR improvements relative to

the results calculated when no filtering is applied.

According to the obtained results we can conclude that the investigated iterative algorithms

(LMS, NLMS, RLS) gives worst detection performance when the target in located inside the
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(a) SMI technique, filter dimensions K = 128 (b) ECA, K = 128 and P = 5

(c) ECA-B, K = 128, T = 0 and = 32 (d) LMS µ = 1e− 9

(e) NLMS µn = 0.01 (f) RLS, K = 128 and λ = 0.95

Figure 8: range - Doppler matrices with different temporal filtering techniques. The dynamic

range is 50dB.

fist K range cell. Expecting the SMI method all the investigated procedures extend the filtering

into Doppler domain also. This ability does improve the separation needed for targets detection,

but remarkable SINR improvement is not realized. At the same time care must be taken when

setting the filter parameters to not suppress the useful target reflections which is close to the zero

Doppler line in the range-Doppler matrix. From among the investigated filtering procedures the

ECA-B algorithm not only has good filtering performance but also reduces the computational

cost compared to the ECA or the SMI method.

In this paper some fundamental temporal interference cancellation techniques have been in-

vestigated in passive radar environment. To compare their performances the realized peak-to-

sidelobe level of a detected target is analyzed in the RD matrix. From among the examined
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methods the batches version of the ECA algorithm seems to be a reasonable choice in systems

where fast update rate and fairly wide cancellation around the zero Doppler line is a must. Fol-

lowing researches may focus on the effect of the reference signal purity both in the detection

and cancellation.
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